Early life history stages of fish have been shown to be sensitive to environmental changes. Given predicted changes in the coming century to the world’s tropical oceans, it is important to characterize how these changes will affect growth and survival of species with commercial and ecological importance.

First sighted in Lebanon in 2012, invasive lionfish have since become well-established in the Mediterranean Sea. In an effort to provide policy recommendations for the lionfish invasion within the Mediterranean Sea, REEF joined in a global collaborative effort with researchers from Europe, Asia, Africa, North America, and the Caribbean to share successes and failures from two decades of lionfish management in the Western Atlantic.

As part of the Grouper Moon Project in Little Cayman, Cayman Island, this study used the sound produced by Nassau Grouper, Red Hind, Black Grouper, and Yellowfin Grouper to monitor the positions of these fish during the Nassau grouper spawning event that occurred in 2017. By using fish sound recorded by multiple instruments, we were able to monitor the presence and location of these fish before, during, and after the spawning. These continuous and overnight records added valuable observations to the limited period of times when divers are able to survey the area.

The Salish Sea in Washington and British Columbia is home to hundreds of fish species, and REEF citizen scientists play an important role in documenting and monitoring the health of fish populations in this biologically diverse region. This paper shows that the REEF Volunteer Fish Survey Project helped monitor more than half of the total fish species known to occur in the Salish Sea.

Managing invasive Indo-Pacific lionfish (Pterois volitans and P. miles) in the Western Atlantic Ocean is beyond the capacity of natural resource organizations alone. In response, organizations have mobilized members of the public and citizen scientists to help. The authors used a structured survey to assess the activities and perceptions of 71 organizations that engage the public and citizen scientists in lionfish research and management throughout the invaded range of the Western Atlantic.

Designing effective local management for invasive species poses a major challenge for conservation, yet factors affecting intervention success and efficiency are rarely evaluated and incorporated into practice. As part of a multi-year study with funding from NOAA Coral Reef Conservation Program and others, REEF and partners coordinated regional efforts by divers to cull invasive lionfish (Pterois spp.) on 33 U.S. Atlantic, Gulf of Mexico, and Caribbean protected coral reefs from 2013 to 2019.

The impacts of invasive lionfish (Pterois volitans/miles) on native coral reef populations in the Western Atlantic Ocean and Caribbean Sea can be enormous. However, how much lionfish differ from native predators and whether their effects outweigh the abundant mesopredators that occupy many reefs invite continued examination. The authors of this paper present empirical evidence from Caribbean Panama and beyond, suggesting that lionfish are less abundant than native mesopredators (e.g. small seabass).

Predation by the invasive Indo-Pacific lionfish impacts native fish populations within the Caribbean region and threatens to expand further into Brazil and the Mediterranean. Identifying the range-restricted native fish species with high predation vulnerability in these areas ahead of the invasion front combined with the knowledge of the time a lionfish population typically takes to reach dangerously high densities could help conservation planners attain positive outcomes and reduce biodiversity loss.

This paper evaluates population trends in Giant Pacific Octopus (GPO) in the Pacific Northwest using REEF Volunteer Fish Survey Project data and other data sources. The authors found large changes in GPO abundance linked to average water temperatures. GPO sighting frequencies ranged from a high of 39% to a low of 11%. For every additional degree increase of 4-year average temperatures, the Puget Sound GPO sighting frequency dropped about 19 points. That’s a loss of roughly 75% of typical diver sightings for every degree C.

East Pacific Green Sea Turtles (Chelonia mydas) have undergone substantial population recovery over the last two decades because of comprehensive protection at nesting beaches and foraging areas. Starting in 2014 in southern California (United States), at the northern end of their range, Green Sea Turtles have been seen in more areas and in greater numbers. A resident population of Green Sea Turtles has established near La Jolla Shores (off San Diego Country), a protected site with daily marine tourism (e.g., kayakers, snorkelers, divers).

Pages